EE 330

Homework 2 Solutions Spring 2024

1)

DRC stands for Design Rule Checking and ensures that all the dimensional tolerances involved within a given process are followed within a layout. For example, if two metal1 interconnects are placed too close to each other, DRC would find that the two interconnects are less than minimally spaced. This tool does not check that correct connections are made, just that the layout meets dimensional rules and manufacturing tolerances.

LVS stands for Layout VS Schematic and ensures that all electrical connections made within a given layout are identical to electrical connections made within a given schematic. For example, if an NMOS gate is tied to an input A in the layout but is tied to an input B within the schematic, the LVS tool would find that the NMOS gate is tied to a different input between the schematic and the layout. This tool does not check that any dimensional rules or manufacturing tolerances are met, just that connections between the layout and schematic are correct.
2)

Wafer area $=\pi r^{2}=\pi(22.5 \mathrm{~cm})^{2}=1590.43 \mathrm{~cm}^{2}$
Dies/Wafer (ignoring edge cases) $=\frac{1590.43 \mathrm{~cm}^{2}}{0.5 \mathrm{~cm}^{2}}=3180.86 \sim 3180 \frac{\text { dies }}{\text { wafer }}$
Ideal cost per die $=\frac{\$ 3000}{3180 \text { dies }}=\$ 0.94$
Yield $=\frac{\text { Ideal cost } \text { per die }}{\text { Cost per die }}=\frac{\$ 0.94}{\$ 3.00}=31.33 \%$
3)

Die area $=(\text { side length })^{2}=(6 \mathrm{~mm})^{2}=(0.6 \mathrm{~cm})^{2}=0.36 \mathrm{~cm}^{2}$
Hard yield $=Y_{H}=e^{-A d}=e^{-\left(0.36 \mathrm{~cm}^{2}\right)\left(1.5 \mathrm{~cm}^{-2}\right)}=58.27 \%$
Total yield $=Y=Y_{H} Y_{S}=(58.27 \%)(100 \%)=58.27 \%$
Dies/wafer (ignoring edge cases) $=\frac{\text { Wafer area }}{\text { Die area }}=\frac{\pi(150 \mathrm{~mm})^{2}}{(6 \mathrm{~mm})^{2}}=1962.5 \sim 1963 \mathrm{dies} / \mathrm{wafer}$
Good Dies/wafer $=(1963$ dies wafer $) *(.5827)=1143.8 \sim 1144$ good dies $/$ wafer
Cost per good die $=\frac{\text { Cost per wafer }}{\text { number of good dies }}=\frac{\$ 3200}{1144 \text { dies }}=\$ 2.797$
4)

Using a normal distribution calculator
https://onlinestatbook.com/2/calculators/normal_dist.html

Specify Parameters:

	Mean
	1.5
SD	0.17

Above 1.96

- Below 1.96
(Between
Outside -1.96

```
Results:
```

Area (probability) $=0.9984$
Recalculate

Specify Parameters:

Mean	2
	0.17

Results:
Area (probability) $=$
Recalculate
5)

14 nm transistor gate area $=(14 \mathrm{~nm})^{2}=196 \mathrm{~nm}^{2}$
14 nm transistor total area $=$ area $*$ overhead $=$ area $* 10=1960 \mathrm{~nm}^{2}=1.96 * 10^{-11} \mathrm{~cm}^{2}$
Transistors per die $=\frac{\text { Die Area }}{\text { Transistor Area }}=\frac{0.25 \mathrm{~cm}^{2}}{1.96 * 10^{-11} \mathrm{~cm}^{2}}=1.276 * 10^{10} \frac{\text { transistors }}{\text { die }}$
New transistor area $=(3 \mathrm{~nm})^{2} *$ overhead $=9 \mathrm{~nm}^{2} * 10=90 \mathrm{~nm}^{2}$
New die area $=\frac{\text { transistors }}{\text { die }} *$ transistor area $=1.276 * 10^{10} * 90 \mathrm{~nm}^{2}=1.148 \mathrm{~mm}^{2}$
New dies/wafer (ignoring edge cases) $=\frac{\text { Wafer Area }}{\text { Die area }}=\frac{\pi(225 \mathrm{~mm})^{2}}{1.148 \mathrm{~mm}^{2}}=138539$ dies
6)
a) Expected hard yield $=Y_{H}=e^{-A d}=e^{-\left(0.85 \mathrm{~mm}^{2}\right)\left(1 \mathrm{~cm}^{-2}\right)}=e^{-\left(0.0085 \mathrm{~cm}^{2}\right)\left(1 \mathrm{~cm}^{-2}\right)}$

$$
Y_{H}=e^{-0.0085}=0.9915=99.15 \%
$$

b) Expected overall yield $=Y_{\text {overall }}=Y_{H} Y_{S}=(0.9915)(0.99)$

$$
Y_{\text {overall }}=0.9815=98.15 \%
$$

c) As spec'd, this ADC is suitable to be produced at the fab location, as expected overall yield is greater than the 95\% yield limit. To find maximum allowable ADC area to stay within 95\% yield limit, derive an equation relating ADC area to yield, with $\mathrm{Y}_{\text {overall }}=0.95$.

$$
Y_{\text {overall }}=Y_{S} Y_{H}=Y_{S} e^{-\left(\text {die area } \mathrm{cm}^{2}\right)\left(1 \mathrm{~cm}^{-2}\right)}
$$

$$
\text { die area } \mathrm{cm}^{2}=\frac{\ln \left(\frac{Y_{\text {overall }}}{Y_{S}}\right)}{-1 \mathrm{~cm}^{-2}}=\frac{-0.04124}{-1 \mathrm{~cm}^{2}}=0.04124 \mathrm{~cm}^{2}=4.124 \mathrm{~mm}^{2}
$$

7)

Probability that one operational amplifier meets the offset voltage criteria

$$
\begin{gathered}
\mu=0 V, \sigma=3 m V \\
P(1 \text { Good op amp })=\left(2 * F_{N}\left(\frac{5 m V-0 m V}{3 m V}\right)-1\right) \\
\left.P(1 \text { Good op amp })=\left(2 * F_{N}(1.66)\right)-1\right)
\end{gathered}
$$

$$
P(1 \text { Good op amp })=(2 * .9515)-1=1.903-1=0.903
$$

Probability that both operational amplifiers meet the offset voltage criteria

$$
\begin{gathered}
P(2 \text { Good op amps })=P(1 \text { Good op amp }) * P(1 \text { Good op amp }) \\
P(2 \text { Good op amps })=0.903 * 0.903=0.8154
\end{gathered}
$$

The probability that there is an IC with both operational amplifiers meeting the offset voltage requirements with the given standard deviation and mean is 0.8154 . This gives us a soft yield of 81.54%.
8)
/*implementation of HW 2 problem 8
2 specified gates included in code
switch between code with en input
en=0 -> 3-in nor
en=1 -> 2-in nand, doesnt use C
EE330 - Integrated Electronics
`timescale $1 \mathrm{~ns} / 1 \mathrm{ps} \quad / /$ give us a nice timescale for simulation
module hw2q8(A, B, C, En, F);
input $A, B, C, E n ;$
output F;
reg Out;
assign $\mathrm{F}=$ Out;
always @ (A or B or C or En) begin
//instantiate the module
//define inputs
//define output
//define placeholder reg for use in always block
//assign placeholder reg to output
//any time an input changes

if (!En) begin	//if enable is zero
Out $=\sim(\mathrm{A}\| \| \mathrm{B}\| \| C) ;$	//F=! $(\mathrm{A}+\mathrm{B}+\mathrm{C})$
end	//exit if statement
if (En) begin	//if enable is one
Out $=\sim(A \& B)$;	//F $=$!(A\&B)
end	//exit if statement
end	//exit always statement
endmodule	//end of module
/*standard 4-input	testbench
EE330-Integrated	ronics

`timescale 1ns/1ps
module standard_tb();
reg $a, b, c, e n ; \quad / / d e f i n e ~ i n p u t ~ r e g i s t e r s ~$
wire out;
hw2q8 DUT(. $\mathrm{A}(\mathrm{a}), \mathrm{B}(\mathrm{b}), . \mathrm{C}(\mathrm{c}), . \mathrm{En}(\mathrm{en}), . \mathrm{F}(\mathrm{out})) ; \quad / /$ instantiate Device Under Test
initial a $=0$;
initial $b=0$;
initial c = 0;
initial en = 0;
always \#1 $\mathrm{a}=\sim \mathrm{a}$;
always \#2 b = ~b;
always \#4 c = ~ c ;
always \#8 en = ~en;
//set initial input values
//for input n, toggle every $2^{\wedge} n$ time units
//set timescale to something nice to simulate
//instantiate testbench module
//define input registers
//define output wire
endmodule //end testbench module

